Confidence Estimation in Classification Decision: A Method for Detecting Unseen Patterns

نویسندگان

  • Pandu R Devarakota
  • Bruno Mirbach
  • Edmond Reuter
  • Björn Ottersten
چکیده

The classification task for a real world application shall include a confidence estimation to handle unseen patterns i.e., patterns which were not considered during the learning stage of a classifier. This is important especially for safety critical applications where the goal is to assign these situations as ”unknown” before they can lead to a false classification. Several methods were proposed in the past which were based on choosing a threshold on the estimated class membership probability. In this paper we extend the use of Gaussian mixture model (GMM)to estimate the uncertainty of the estimated class membership probability in terms of confidence interval around the estimated class membership probability. This uncertainty measure takes into account the number of training patterns available in the local neighborhood of a test pattern. Accordingly, the lower bound of the confidence interval or the number of training samples around a test pattern, can be used to detect the unseen patterns. Experimental results on a real-world application are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability estimation of a statistical classifier

Pattern classification techniques derived from statistical principles have been widely studied and have proven powerful in addressing practical classification problems. In real-world applications, the challenge is often to cope with unseen patterns i.e., patterns which are very different from those examined during the training phase. The issue with unseen patterns is the lack of accuracy of the...

متن کامل

A research on classification performance of fuzzy classifiers based on fuzzy set theory

Due to the complexities of objects and the vagueness of the human mind, it has attracted considerable attention from researchers studying fuzzy classification algorithms. In this paper, we propose a concept of fuzzy relative entropy to measure the divergence between two fuzzy sets. Applying fuzzy relative entropy, we prove the conclusion that patterns with high fuzziness are close to the classi...

متن کامل

Sensitivity Analysis of Banks Efficiency to the Financial Variables

Discriminant analysis is a classification method that can predict the group membership of a newly sampled observation. In discriminant analysis, classification of new observed data has an uncertainty. In this paper, the confidence degree is introduced to determine the confidence of classification of new observed data. Then, a Monte Carlo-based sensitivity analysis is applied to an assessment of...

متن کامل

A confidence-aware interval-based trust model

It is a common and useful task in a web of trust to evaluate the trust value between two nodes using intermediate nodes. This technique is widely used when the source node has no experience of direct interaction with the target node, or the direct trust is not reliable enough by itself. If trust is used to support decision-making, it is important to have not only an accurate estimate of trust, ...

متن کامل

A Margin-based Model with a Fast Local Searchnewline for Rule Weighting and Reduction in Fuzzynewline Rule-based Classification Systems

Fuzzy Rule-Based Classification Systems (FRBCS) are highly investigated by researchers due to their noise-stability and  interpretability. Unfortunately, generating a rule-base which is sufficiently both accurate and interpretable, is a hard process. Rule weighting is one of the approaches to improve the accuracy of a pre-generated rule-base without modifying the original rules. Most of the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006